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Abstract

We investigate the role of visual attention in risky choice in a rich experimental dataset

that includes eye-tracking data. We first show that attention is not reducible to indi-

vidual and contextual variables, which explain only 20% of attentional variation. We

then decompose attentional variation into individual average attention and trial-wise

deviations of attention to capture different cognitive processes. Individual average

attention varies by individual, and can proxy for individual preferences or goals (as

in models of “rational inattention” or goal-directed attention). Trial-wise deviations

of attention vary within subjects and depend on contextual factors (as in models of

“salience” or stimulus-driven attention). We find that both types of attention predict

behavior: average individual attention patterns are correlated with individual levels of

loss aversion and capture part of this individual heterogeneity. Adding trial-wise devi-

ations of attention further improves model fit. Our results show that a decomposition

of attention into individual average attention and trial-wise deviations of attention can

capture separable cognitive components of decision making and provides a useful tool

for economists interested in choice.
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1 Introduction

Over the last decades, economists have become increasingly interested in attention. For

instance, on the microeconomic level, researchers have proposed that attention may explain

behavioral biases such as the endowment effect, the attraction effect or the phenomenon

of motivated cognition. On the macroeconomic level, limits to attention may explain how

economic agents react to news shocks, form expectations about future prices and how this

affects business cycles. Alongside these applications, several prominent new theories try

to incorporate the role of attention in economic behavior. “Salience theory” explains how

prominent features among potential payoffs attract attention and sway decisions, leading to

behavioral biases (Bordalo et al., 2012, 2013). Theories of “Rational Inattention” propose

that decision makers direct limited attentional resources to information that is deemed to

be most useful (Sims, 2010; Gabaix, 2019). Finally, sequential sampling models offer a

descriptive framework of how processes of information acquisition translate into decision

making (Ratcliff, 1978; Krajbich et al., 2012; Fudenberg et al., 2018).

These theoretical approaches differ fundamentally in their description of economic

agents. Some theories, like rational inattention, emphasize personal factors such as in-

dividual preferences as a source of attention. Others, like salience theory, stress external

contextual influences. This discrepancy mirrors a prominent distinction in psychology and

neuroscience, where researchers distinguish between “goal-directed” (also referred to as

“top-down” or “endogenous”) and “stimulus-driven” (also referred to as “bottom-up” or

“exogenous”) attention processes (Posner et al., 1980; Egeth and Yantis, 1997; Corbetta

and Shulman, 2002). It is clear from both the neuroscientific literature and everyday ex-

perience that both these forces affect attention. As an example, consider going to the

supermarket with a prepared shopping list that guides your search, while simultaneously

being tempted to make unplanned purchases of highly salient or advertised items.

The distinction between personal and contextual drivers of attention matters for both

theoretical modeling and for practical applications. Yet, while some papers in psychology
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and neuroscience have tried to quantify the influence of these different channels on behavior,

as we discuss in more detail below, there has been little work to understand their relative

importance. In particular, we aim to identify here how much these attentional variations

are predictive of choice, and consequently, how useful they are to the toolkit of empirical

economists. These questions become more important as attention measurements such as

eye-tracking become cheaper and less challenging to implement, and may even take place

via internet-connected webcams (Yang and Krajbich, 2021).

In this paper, we propose a novel empirical method to approximate personal and

context-driven variation in attention, and illustrate our method in two original experi-

ments on risky choice. Over multiple trials, subjects choose to accept or reject lotteries

with equiprobable losses and gains, which vary between trials. While subjects make choices,

we record their attention patterns to potential gains and losses using eye-tracking. Our

method decomposes attentional variation into two orthogonal dimensions: 1) between-

subject variation in attention, measured as the individuals’ average attention to specific

attributes, and 2) within-subject variation in attention across trials, which is measured

as the deviations from the individual-specific average on each trial. We argue that these

measures proxy for personal and contextual drivers in our setting: option attributes vary

across trials, but not across decision makers so between-subject variation in average at-

tention should be mostly associated with personal differences. By contrast, within-subject

variation in attention, which keeps personal characteristics of the decision maker constant,

proxies for contextual influences.

We first show that attention is not well explained by individual characteristics like age

or gender, or contextual elements like the size or screen location of gains and losses. This

underlines the additional explanatory power that attention can have as a predictor of choice,

which we test next. We find that both between-subject and within-subject variation in

attention explain risky choices. Between-subject variations in attention to gains and losses

correlates with a measure of individual loss aversion. Using standard random utility models,
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we show that including average individual variation in attention is a significant predictor

of the weight allocated to gains and losses in the decision process. This effect is robustly

observed across multiple model specifications and remains significant in the context of

statistical methods that capture heterogeneous behavior. In addition, incorporating within-

subject attentional variation explains an additional, if modest, amount of variation in

choice, suggesting context also has an independent influence on choice.

As we explain in more detail in the next section, we contribute to the literature on

attention in economic choice in various ways. First, we show how eye-tracking data can be

decomposed into two channels that approximate the individual vs. contextual distinction

in attentional control, which is commonplace in the neuroscience and psychology literature

(and more recently in economics). We also contribute to the literature on risky choice,

by showing that both individual and contextual attentional processes are linked with risk-

taking decisions. Our results show that risk taking is related to both personal, agent-

related characteristics involved in deliberate choices, but also to situational factors such as

the salience of specific choice options.

2 Related Literature

The fields of psychology and cognitive (neuro-)science have long studied attention as a

mechanism that reduces demands on limited visual and other cognitive systems by filtering

relevant information from the large amounts of information entering our perceptual systems

at any moment (e.g. Posner, 2011). Recent key empirical findings that show a strong link

between visual attention and decisions have attracted the interest of the field of decision

science. Specifically, choice options that enter the attentional focus more often and for

longer are more likely to be chosen (Krajbich et al., 2010, 2012; Lim et al., 2011; Polonio

et al., 2015; Pachur et al., 2018) and choice options with higher values attract attention

more than those with lower values (Anderson et al., 2011; Gluth et al., 2018; Amasino

et al., 2019; Gluth et al., 2020).
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When it comes to characterizing the determinants of attention, the literature makes

a fundamental distinction between goal-directed (top-down) and stimulus-driven (bottom-

up) channels of attention, as defined in the introduction. Stimulus-driven attention is

thought to have a larger influence on explorative decision processes, when individuals

do not yet have a specific rule of choice (Fehr and Rangel, 2011; Gottlieb et al., 2013).

Nonetheless, a number of studies have provided evidence that both channels of attention

play a role in decision-making (e.g. Orquin and Mueller Loose, 2013; Orquin and Lagerkvist,

2015; Corbetta and Shulman, 2002). Moreover, empirical and theoretical considerations

in neuroscience suggest that the brain may process these types of attention in partially

separable neural networks (e.g., Corbetta and Shulman, 2002; Ungerleider and Kastner,

2000).

In economic theory, similar distinctions have emerged. The importance of stimulus-

driven attention for economic decisions is represented in “salience theory” proposed in

Bordalo et al. (2012, 2013) and related models like Kőszegi and Szeidl (2013). These models

propose functions that map different choice attributes into “salience”, which reflects the

ease by which information is detected by the decision maker. More salience of an attribute

translates into higher weights of said attribute in the decision. In these models, salience

operates in a mechanical way, i.e. without any explicit optimization by the decision maker.

It is therefore likely to lead to behavioral biases. Indeed, some of the key insights of these

models are to account for a variety of behavioral biases such as the Allais’ paradox or the

endowment effect (Bordalo et al., 2012).

By contrast, the importance of goal-directed attention is reflected in economic models of

rational inattention (Sims, 2003, 2010; Gabaix, 2019; Caplin and Dean, 2015; Bartoš et al.,

2016). In these theories, the decision maker optimally allocates scarce attention to those

information sources or attributes that are most likely to affect the utility of choice. These

models offer an answer to the question of how a decision maker can optimally allocate at-

tention before actually knowing the value of the choice (Gabaix, 2014). Applications have
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emerged in finance (Peng and Xiong, 2006), business cycle theory (Maćkowiak and Wieder-

holt, 2015), monetary policy (Mackowiak and Wiederholt, 2009), industrial organisation

(Dessein et al., 2016; Fosgerau et al., 2020), and consumer theory (Reis, 2006; Matějka and

McKay, 2015; Caplin and Dean, 2015).

Our exercise is motivated by the seemingly disparate views of the relative roles of agent

and context that is inherent in these theoretical approaches. Our goal here is to approxi-

mate these attentional processes using readily available measures of attention in laboratory

settings, namely eye-tracking, in combination with a novel econometric approach that sep-

arates average attention - reflecting individual-differences - from trial-wise deviations in

attention - reflecting contextual influences on attention. Most closely related to this en-

deavor are papers that decompose attention using a number of different methods1. Fisher

(2021) investigates the role of attention in intertemporal discounting, and shows that both

within- and between-subject variation in attention allocation correlate with intertemporal

decisions. In addition, random variations in exposure time to different attributes explain

about 5% to 10% of intertemporal choices. Ghaffari and Fiedler (2018) attempt to dis-

entangle top-down and bottom-up attentional processes in moral choices. Adapting the

well-established empirical result that choices are predicted by the last fixation, they ex-

perimentally manipulate the last fixation. Their results indicate that the attribute fixated

last is predictive of choice, indicating an effect of bottom-up attention, which they esti-

mate to be responsible for about 11% of the variance in decisions. Third, Towal et al.

(2013) perform an eye-tracking experiment on snacks, where they first elicited the value of

snacks from participants. They calibrate the parameters of a modified drift-diffusion model

(Ratcliff, 1978), where the drift rate can depend on the product’s value and/or salience,

1Other recent papers have focused on establishing a causal effect of attention, by manipulating attention
via visual salience, exposure time or other contextual, bottom-up interventions. Evidence has been presented
for such attentional influences on choice in a multitude of domains (see e.g., Armel et al., 2008; Reutskaja
et al., 2011; Atalay et al., 2012; Pärnamets et al., 2015; Pachur et al., 2018; Ghaffari and Fiedler, 2018;
Gluth et al., 2018, 2020). In economics, Dertwinkel-Kalt et al. (2017) and Dertwinkel-Kalt and Köster
(2020) have tested recent models of salience discussed above. These studies have shown that there is a
causal effect of attention, although its size is often modest.
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a measure constructed from the perceptual features of the products appearance. Value

appears as a more important predictor than salience, with a relative weight that is about 3

times higher. Finally, Navalpakkam et al. (2010) ask their participants to choose between

multiple targets that vary in value and salience, finding a significant effect of both on the

decision.

Our paper adds to this literature by providing a statistical approach that decomposes

attentional variation into (1) individual-average attention and (2) deviations from average

attention on each trial using the same underlying eye-tracking data. This approach enables

the researcher to assess to what extent each attention channel contributes to variance in

choices using a single model. We adapt the traditionally used multi-attribute utility models

to allow for both individual- and trial-wise variations in attention. In the context of our

model, these attention channels can alter the weights for each attribute, thereby affecting

decisions. In doing so, we elucidate the assumptions under which one can approximate

goal-directed and stimulus-driven processes via between- vs. within-subject variation in

attention and choice.

Apart from our methodological insights, we contribute to a literature about the role of

attention in risky choice (Fiedler and Glöckner, 2012; Pachur et al., 2018). In particular,

we complement findings by Pachur et al. (2018), who show that loss aversion parameters

are correlated with attention, and that exogenous variations in attention cause shifts in loss

aversion. Our paper adds to this evidence, and shows that loss aversion is correlated with

between-subject variation in attention. This is in line with our theoretical approach, which

associates between-subject variation in attention with mechanisms that are internal to the

agent. Additionally, our finding that within-subject variation in attention plays a role in

risky choice may help explain the instability of decisions in risky choice across contexts

(Bordalo et al., 2012; Johnson and Schkade, 1989).
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3 Experimental Design

3.1 Participants

In total 99 participants took part in two experiments (n1 = 53, n2 = 46), which were

identical except for small details (more on that below). Data from 8 participants were

excluded, because of technical problems that occurred during data collection (5 in Exp.1

and 3 in Exp.2) due to wearing glasses or contact lenses that were incompatible with

the eye-tracker (n = 5) and problems with recording the behavioural data (n = 3). One

participant made the same decision in all trials, therefore their data was excluded. Partial

data for one of two sessions was included for 3 more subjects (2 in Exp.1 and 1 in Exp.2),

due to incomplete measurement of the visual data in one of the sessions (data loss of more

than 75% due to calibration difficulties). The final data used for analysis therefore contains

91 participants (59 females, average age is 23.5 years).

Participants in both experiments were students from the University of Amsterdam,

with no impaired or corrected vision. The recruitment was done via the website of

the Behavioral Science Lab that houses the eye-trackers used in the current experiment

(https://www.lab.uva.nl/lab). The participants signed an informed consent (available in

the Appendix) and the experiments were approved by the FMG Ethics Committee of the

University of Amsterdam.

3.2 Experimental Procedures

On the day of the experiment, participants performed the main task in a darkened test-

ing room. This was done to reduce the effects of ambient light changes on pupil dilation.

Jointly, the instructions, practice session and calibration procedures provided ample time

to adjust to the background light in the experiment room. Eye movements made through-

out the experiment were recorded using an EyeLink 1000 desk-mounted eye-tracker with

a sampling rate of 500 Hz. To improve the accuracy of eye-tracking data collection, par-

8



ticipants were asked to rest their heads on a chinrest to stabilize the head position and

maintain a constant distance from the screen throughout the experiment. The stimuli

were presented on a 22-inch screen with the resolution set to 1920 × 1080 pixels and a

refresh rate of 60 Hz. At the start of the experiment and at the half-way point (after 80

trials) a 9-point calibration was performed to ensure proper calibration of the eye-tracker

throughout the experiment.

3.3 Main Task

The main task in both experiments consisted of a series of 160 individual decisions involving

risk. In each trial, participants were asked to accept or reject a mixed gamble with two

equally likely outcomes. The outcomes were always a positive (“gains”) and a negative

one (“losses”). Figure 1 shows the sequence of an example trial. At the beginning of

the trial, participants were asked to focus on a fixation cross presented in the middle of

the screen for a jittered period of time (300-1100ms). This ensured that in each decision

period eye fixations started from the same central position and that attention was not

biased towards a single location. Then the two potential outcomes appeared at each side

of the screen, with the left stimulus located at (x = 480px, y = 580px), and the right

one at (x = 1420px, y = 580px). This wide separation between lottery options along the

x-dimension (of approximately 2.5◦ of visual angle) ensured that eye movement patterns

can be well separated during the analysis stage (see Figure S1). The location of gains and

losses was counterbalanced, such that they had an equal chance of appearing on the left or

right in each trial.

The participants were asked to press the Up-Key on the keyboard to accept the gamble

or the Down-Key to reject it. Subjects were given a period of 5 seconds to make the

decision. If the subject did not respond within those 5 seconds, a message appeared on the

screen reminding participants to ‘Respond Faster’. In total, 47 of the 14,372 analysed trials

exceeded the time limit; these ‘miss’ trials were excluded from the analysis. Participants
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were aware that if they did not respond within the 5-second period, they would receive the

loss outcome of that trial in case it was selected at random at the end of the experiment. In

experiment 2, the trial continued with a question of how confident the subject was about

their decision, which was the only difference between the two experiments.

Figure 1: Example of Experimental Trial
Initially, a white fixation cross is shown for a random duration that is jittered between 300ms and 1100ms.

The prospect is then presented. Participants then communicated their decision by pressing the up or down

keys of the keyboard to accept or reject respectively. Feedback informed participants what option they had

chosen before the next trial began in experiment 1. Experiment 2 differed only in that participants were

asked to rate their confidence before the next trial.

The attributes presented on the left and right were pseudo-randomized, such that the

subject would never observe a loss or a gain more than three consecutive times on one

side. The values of the Gains and Losses varied across trials. The gains fell between 20 to

38 ECU (experimental currency units) in steps of two units (10 cases). The losses ranged

from -13 to -27 ECU in steps of two (8 cases). Gains and losses were independent from

each other, and participants observed all possible combinations between gains and losses

twice (80 trials per session in 2 sessions).
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3.4 Incentives and Payment

Participants filled out a 30-minute online questionnaire consisting of a number of estab-

lished Personality Questionnaires (e.g., ERQ, STAI, BIS-11) up to 1 day before the main

experiment. The participants received e10 as a payment for completing the questionnaires.

This amount served as an endowment for the main task to avoid the house money effect

(Thaler and Johnson, 1990). Participants were informed that one of the 160 trials would

be chosen at random. If the lottery was accepted on that trial, then the lottery would be

resolved via a virtual coin flip. The outcome would be added to the initial endowment if

it was a gain, or subtracted from the initial endowment if it was a loss. The ECUs were

converted to e at a rate of 1
5.4 . In case the lottery was rejected, participants would receive

the initial payment only. On average participants earned e10.80 and e10.94 in Experiment

1 and 2 respectively.

3.5 Eye-tracking Data Acquisition and Pre-processing

Fixation points were carefully calibrated using a 9-point calibration at two time points

in the experiment (before the start of the experiment and after 80/160 completed trials).

Furthermore, throughout the experiment, gain and loss attributes were clearly separated

by presenting one attribute on the left and another on the right of the center. This clear

separation of lottery attributes on the screen allowed us to define well-defined and non-

overlapping regions of interest and thereby to improve the identification of fixations. Next,

using k-means, we clustered the fixations along the horizontal axis representing fixation

areas for left and right gamble attributes, and central fixation, which occurred only at the

beginning of each trial. We ignore the vertical position for clustering, since all the stimuli

were positioned at the same vertical location. This allowed us to discriminate between

fixations for each outcome (left and right ROI) and central fixations (see Supplementary

Figure 4). Finally, K-means clustering was performed for each session separately, as sepa-

rate calibrations were performed for each session.
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Table 1 shows the number fixations for each region of interest by their order of oc-

currence. A large majority of the first fixations are on the centre (90%), indicating that

subjects followed task-instructions to focus on the fixation cross between trials. Most sub-

sequent fixations go to the left first (68.9%), reflecting a commonly observed upper-left

location bias (Orquin and Mueller Loose, 2013).

Fixation Left Right Total

1 10,463 3,195 13,658
2 2,859 9,780 12,639
3 5,265 2,057 7,322
4 922 1,906 2,828
> 5 922 876 1,798

Total 20,431 17,814 38,245

Table 1: Number of fixations by order of Fixation and Region of Interest

We focus our analyses of the eye-tracking data on the dwell times, defined as the

period participants fixate on a lottery attribute throughout one trial. We do this, because

dwell times are the dominant measure of attention in the literature. Another measure,

the number of saccades or switches of gaze between options, are less informative for our

purpose. As shown in Table 1, the majority of trials do not contain more than three

fixations, hence this number has little variation across trials and participants.

4 Empirical strategy

Our empirical strategy proceeds in several steps. First, we aim to establish that attention

is not a direct function of other observable variables like choice attributes or standard

demographics, as this would make it unlikely that attention adds explanatory power as a

predictor in choice models. Second, we aim to separate attentional variation into individual

and contextual drivers to approximate the common distinction in cognitive science between

goal-directed and stimulus-driven attention. To accomplish this, we decompose attention

into between-subject and within-subject variation as proxies for these drivers. Third, we
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aim to understand the relation of both types of attentional channels with choice behavior.

We model choice via a standard random utility model, which allows us to estimate the

decision weights on positive and negative lottery payoffs. Decision weights, in turn, relate

to loss aversion. We then correlate the individual average attention with these estimated

weights. Finally, we compare how the addition of the two types of attention affects the fit

of standard empirical models of risky choice. In the remainder of this section, we discuss

these conceptual steps in turn.

Before we proceed it should be noted that, when it comes to attentional measures,

eye-tracking provides a rich data set from which different measures of attention can be

generated. The most commonly used measures, which are the focus of our analysis, are

the number of fixations directed to an area of interest (AoI), the total or relative fixation

duration on an area of interest, or which stimulus was attended first/last.2 For brevity, we

focus on the dwell times (total time spent looking at an attribute, expressed in logarithm)

in our main analyses, but add supplementary analyses with alternative measures in the

appendix when we cannot include these in a parsimonious manner in the main text.

4.1 Determinants of attention

To contribute to the description of choice behavior, attentional measures should contain

information that is not already captured by other (standard) observable variables. Oth-

erwise, variables that correlate highly with attention, and that are collected with greater

ease than eye-tracking data, could be used as measures to approximate attentional ef-

fects on choice. We therefore identify the correlates of attention by separating individual

(between-subjects) and contextual (within-subject) factors and subsequently analyze their

contribution to explain variations in attention. Furthermore, we investigate whether the

role of individual or contextual factors differs for several attentional measures that can be

2Nonetheless, there are other measures of attention that can be derived from eye-tracking data. See
Rahal and Fiedler (2019), the authors write a comprehensive description of all the attention measures used
in the literature and their potential uses.
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extracted from eye-tracking data, including variations in the proportion of time subjects

fixated on each attribute, the total dwell time3, the number of fixations, what is attended

first, and which attribute is attended last.

To this end, we estimate a linear mixed model where we regress attention on observables

with random-intercepts for each participant (see appendix A for the regression tables).

Based on the estimates of our mixed model, we calculate the best linear unbiased predictors

(BLUPs; Liu et al., 2008) for the random intercepts as outlined in detail in section 4.3.

BLUPs reflect the individual average attention that is not captured by the other observables

included in the regression. We next assess how much of the variance in attention can be

explained by each factor using a Shapley value analysis (Lipovetsky, 2021) in which we enter

the BLUPs as an additional individual factor. The Shapley value regression analysis is a

method used to determine the contribution of each covariate in a regression model to the

prediction of the target variable.4 This analysis not only provides an easier interpretability

of the results compared to a standard regression approach. It also provides additional

insights when we expect covariates to be highly correlated, and when standard regression

approaches are less reliable.

4.2 Attention decomposition

As we argued in the introduction, attention may affect choice via both individual and

contextual variation. To understand this better, we decompose attentional variation into

two orthogonal measures. First, we calculate each individual’s average attention for each

3We use the logarithm of the dwell time. This is a common practice when using time variables, or other
which are positively skewed (e.g., income).

4The method is based on the concept of Shapley values from cooperative game theory (Roth, 1988),
and its output, the Shapley value, represents the average marginal contribution of a covariate across all
possible combinations of covariates based on a defined value function. This analysis is conducted by running
regressions with all subsets of covariates and record a value function (R2 in our case to determine percentage
of variance explained). Then, we sequentially run separate regressions in which we include one attribute at a
time and compute the marginal contribution to the value function. The marginal contribution is calculated
for all possible ordering sequences of the covariates, ensuring a fair and consistent method to attribute the
amount of variance explained to each covariate.
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specific stimulus/attribute (i.e., Gains and Losses). Let ax,i,t be the allocated attention to

attribute x ∈ {Gain, Loss} by individual i in trial t ∈ {1, ..., T}. We define the average-

attention measure āx,i as the standardized average attention to attribute x by individual i

across all trials.

āx,i :=

1
T

(
T∑
t=1

ax,i,t

)
− āx

sd(ax)
. (1)

Where āx and sd(ax) are the sample mean and standard deviation of the attention measure

for attribute x. Thus, this variable reflects how much more participant i attends to attribute

x compared to the whole sample (measured in standard deviations).

Our second measure of attention captures the trial-wise deviations of attention from

the individual averages for each attribute. The trial-wise deviation of attention, defined as

ãx,i,t, is calculated as in equation (2). This variable reflects how much more participant i

attends to attribute x in trial t compared to the participants’ average behaviour (measured

in standard deviations).

ãx,i,t :=

ax,i,t − 1
T

T∑
t=1

ax,i,t

sd(ax)
. (2)

In our study, participants do not receive any feedback about their decisions until the

end of the experiment. The only variables that vary across the trials are the values of the

lottery outcomes and where they are presented. All participants undergo the same trials

but in a different order. This implies that between-subject variation in attention reflects

personal differences, and can thus be considered a proxy for attention driven by personal

goals and characteristics, which is often associated with goal-directed or top-down atten-

tion. By contrast, within-subject variation in attention keeps individual characteristics

constant, and hence reflects elements of the decision context, such as the location of gains

and losses on the screen (which was randomized). Note that this interpretation of our de-
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composition relies on some untested assumptions, most notably the absence of interactions

between contextual variables and the goals or preferences of individuals. An example for

the presence of such interactions is when participants receive feedback after each trial. In

this case, learning processes will impact both average attention, which may update over

the course of the experiment, as well as trial-wise deviations from average attention, which

may be impacted by prior feedback. If such interactions exist, the model will overestimate

the importance of contextual factors, as individual variations will be wrongfully attributed

to context.

4.3 Modeling the decision process

The key part of our analysis concerns role of attention in decision making. To conceptualize

the decision making progress, we use a standard random utility model (RUM; McFadden,

1980). The general specification of our model is described by equations (3) and (4).

P (Di,t = accept) = (1 + exp{Vi,t})−1, (3)

Vi,t = αi + ωG,iGt + ωL,iLt. (4)

Here, ωG,i, and ωL,i can be interpreted as weights on the potential gains and losses that

determine the value of the lottery and hence the probability to accept it.

We estimate the RUM using a logit mixed model with random intercepts and slopes.

We allow the covariance matrix of the random intercepts and slopes to be unstructured (i.e.,

non-zero covariance between errors). Additionally, we estimate the best linear unbiased

predictors (BLUPs; Liu et al., 2008) for αi, ωG,i, and ωL,i for each individual. Mixed

models assume that each of the parameters is composed of a mean and an individual error

term (i.e., random slopes and intercepts), which are not directly estimated but included

in the covariance matrix of the decision models. Therefore, mixed models estimate the
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distribution of these individual errors. Based on these estimated distributions and the

individual decision data, we can calculate the posterior expectation of these errors (i.e.,

BLUPs). BLUPs thus reflect predictions for the individual parameters that come from a

common distribution, but also incorporate the components of the individual decisions.

The goal of our main analyses is to test whether the attention indices can capture

the differences in the individual model parameters (αi, ωG,i and ωL,i). There are two

components to this goal: first, on the behavioral level we wish to confirm that attention

correlates with these individual parameters, which would indicate that attention is an

important cognitive process that supports choice; second, on the modeling level we wish to

demonstrate that we can credibly use attention as a proxy for the individual parameters

reflecting heterogeneous behavior in contexts where these parameters are unidentifiable.

This can occur for instance in the context of mixed regression models, which can increase

in complexity to the point of becoming unidentifiable, especially when aiming to fulfill the

common requirement of using maximal random effects structures (Barr et al., 2013). We

aim to test whether the use of attention variables offers a parsimonious solution for cases

where the model complexity is high and these models are not identifiable.

To address the first goal, we correlate the individual parameters of choice with in-

dividual attention variables. We then ask how much of the variability in the individual

parameters can be explained by individual average attention and other individual charac-

teristics. To do so, we use a Shapley value analysis described above. The Shapley value

regression analysis provides a fair and consistent estimation quantifying the contribution

of each attention variable despite the potentially high degree of correlation between them.

The Shapley-value analysis is performed using the SHAPLEY2 package in Stata17 (Wen-

delspiess Chávez Juárez, 2015).
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4.4 Effects of separate attention channels on choice

Finally, we analyse whether the different measures of attention can improve empirical

models of choice. To accomplish this, we estimate the model defined in equations (3) and

(4) and incorporate the attentional measures as moderators for the weights on gain and

loss values, as follows:

Vi,t = αi + ωG,iGt + πG,āāG,i + πG,ããG,i,t + ωL,iLt + πL,āāL,i + πL,ããL,i,t + εi,t (5)

To evaluate the contribution of attention to explaining decisions, we consider two types

of often-used logit models. First, we consider models that have random intercepts but a

common slope, i.e. ωi = ω, which is a standard approach in economics. To evaluate the role

of attention, we estimate the model with and without interactions of individual attention

and trial-wise attention to the attributes (gains and losses), and compare standard measures

of model fit.

Second, we address our second main goal outlined in section 4.3 and consider more

elaborate mixed models (Barr et al., 2013) that include random effects for the coefficients

of the attributes (slopes). These models benefit from a large number of observations per

person, that are typically elicited in neuroscientific experiments, but not economic ones. We

can exploit the large dataset we have collected (Up to 160 observations per participant),

which enables us to estimate these types of models. Importantly, this approach allows

us to test the contribution of attention to the model fit after including the individual

heterogeneity.

5 Results

We now discuss the results of our three-part empirical analyses in turn. Specifically, we

first assess the determinants of attention by testing whether variance in attention is as-
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sociated with individual characteristics like age or gender, or contextual elements like the

size or screen location of gains and losses. We find that among the variables included in

the current study both individual and contextual factors explain relatively little in the

variance of attention, suggesting that including attention as a predictor of choice can add

important explanatory power above and beyond these factors. Next, we test exactly this

question: does attention explain decisions? Moreover, we compare the descriptive power

of three different measures of attention that can be derived from eye-tracking data, a novel

decomposition of the eye-tracking data into two attention channels reflecting (1) individual

average attention, (2) trial-wise deviation from average attention, and (3) a measure that

does not separate attentional variation (the standard in prior research). To this end we

sequentially add the different attention variables as predictors into standard random util-

ity models. Specifically, we assess whether average individual variation in attention and

trial-wise deviations in attention are significant predictors of choice by testing their effects

on decision weights for gains and losses. We do this first for a type of model commonly

used in economics that includes random effects for the intercepts. We then compare our

results to a model class more commonly used in psychology/neuroscience, namely mixed

models that add random slopes for these weights.

5.1 Determinants of attention

In the first part of our analysis, we explore potential factors that influence attention.

Tables 2 and 3 show the Shapley value analysis for all the variables measuring attention

to Gain and Loss values respectively. In Appendix section A we present the estimates of

the regressions used in this analysis.

We separate the measured factors as contextual (within subjects) and individual (be-

tween subjects) effects. Tables 2 and 3 show that the individual factors explain about

20% and 16% (depending on whether the estimates are for gains or losses) of the total

dwell times and the amount of fixations, respectively. Similarly, our results show that the
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Table 2: Shapley value analysis assessing the explained variance for individual differences
in attention to gains

Prop. DT DT N First Last

Contextual Factors 4.58 3.92 2.54 26.95 1.62

Trial 0.09 0.67 0.56 0.01 0.06
Trial2 0.01 0.10 0.05 0.00 0.00

Gain Value 0.09 0.28 0.19 0.01 0.03
Loss Value 0.52 0.23 0.34 0.22 0.40

Loss Left 3.87 2.64 1.40 26.71 1.13

Individual Factors 3.45 20.44 16.61 0.18 3.08

Female 0.00 0.53 0.02 0.00 0.00
Age 0.17 0.66 0.73 0.00 0.32

Random Effects 3.28 19.25 15.86 0.18 2.76

Residual 91.96 75.63 80.86 72.87 95.31

The table above shows the Shapley value analysis (based on R2) for the attention to gains.

The table shows the contribution of each variable (in percentage points) to the variance of each

dependent variable.

first fixation is strongly explained by the position of the attribute. In all, the contextual

and individual factors included here explain a relatively small proportion (between 5% and

25%) of attentional variation, and explain less than 10% of the variable most commonly

used as a proxy for attention, namely proportional dwell time.
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Table 3: Shapley value analysis assessing the explained variance for individual differences
in attention to losses

Prop. DT DT N First Last

Contextual Factors 4.58 1.29 3.30 26.95 1.62

Trial 0.09 0.18 0.31 0.01 0.06
Trial2 0.01 0.03 0.04 0.00 0.00

Gain Value 0.09 0.02 0.06 0.01 0.03
Loss Value 0.52 0.18 0.13 0.22 0.40

Loss Left 3.87 0.88 2.76 26.71 1.13

Individual Factors 3.45 19.98 15.79 0.18 3.08

Female 0.00 0.45 0.02 0.00 0.00
Age 0.17 0.09 0.31 0.00 0.32

Random Effects 3.28 19.44 15.46 0.18 2.76

Residual 91.96 78.73 80.91 72.87 95.31

The table above shows the Shapley value analysis (based on R2) for the attention to losses.

The table shows the contribution of each variable (in percentage points) to the variance of each

dependent variable.

5.2 Decisions and individual differences

Now that we have established that attention shows little association with a number of indi-

vidual and contextual factors in the previous section, we aim to address our main research

question in the current section, which is whether attention is related to decisions. Before

estimating decision models with attention variables in the next section, we first assess sim-

ple associations between attention and loss aversion. We follow prior work (Pachur et al.,

2018) and test the relation between loss aversion and the individual attention measures.

To this end, we compute two variables: (1) the difference in the decision weights extracted

from a decision model without attention (See Table 6, column 1) and (2) the difference in

individual average attention between gains and losses for our three main attention variables

(proportional Dwell Time (DT), log(DT), number of fixations). Note that we estimate de-

cision weights using equation (4) and a logit mixed model with random intercepts and

slopes. This approach enables us to subsequently derive the best linear unbiased predic-

tions (BLUPs) of the individual model parameters, including the intercept (αi), and the
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individual decision weights for gains (ωG,i) and losses (ωL,i). We then correlate the dif-

ference between the estimated individual weights on gains and losses ∆ω = ωL,i − ωG,i,

a proxy for loss aversion, with a measure reflecting ”attentional” loss aversion, namely

∆ā = āL,i − āG,i.

Figure 2 shows the results, with the three panels corresponding to proportional dwell

time (Panel a), the log of dwell time (Panel b) and the number of fixations (Panel c). The

first two relative attention variables capture a sizeable part of the variation in loss aversion:

the proportion of time fixated on losses vs gains (ρ = 0.3679, p < 0.001) and the total dwell

times on losses relative to gains (ρ = 0.3532, p = 0.0005) are significantly correlated with

the differences in decision weights. Note that these results are also significant when applying

the Bonferroni correction for multiple comparisons (for the 6 correlations inspected here,

the corrected alpha level equals 0.0083). By contrast, the differences in number of fixations

have no significant correlation with the individual differences in decision weights (ρ =

0.0572, p = 0.5859). This shows that individual average attention is indeed a predictor of

individual heterogeneity in choice, and individual loss aversion. In Appendix section B, we

show a similar analysis for the base level, reflected by the individual intercepts (αi), which

represents the individual pre-disposition to accept the lottery regardless of the outcomes.

We show that while such predispositions still correlate with attentional measures, these

effects are very small.

To get a better sense of the relative predictive power of different attention measures,

we run a Shapley value analysis to determine how much of the differences in individual

parameters can be explained by the attention variables. Table 4 shows the Shapley value

analysis for the individual differences in the decision parameters based on individual char-

acteristics and attentional variables. The first two columns represent the percentage of

variance explained for the weights of Gain (ωG,i) and Loss (ωL,i) values respectively. The

third column shows the percentage of variance explained for the difference between these

decision weights (ωG,i − ωL,i). Finally, column four shows the explained variance of the
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Figure 2: Association between attentional and behavioral loss aversion

Correlation between the differences in decision weights (∆ω = ωL,i − ωG,i, on the vertical axis)

reflecting behavioral loss aversion, and the differences in average attention towards losses relative

to gains (∆ā = āL,i − āG,i, on the horizontal axis), reflecting attentional loss aversion. The red

line displays the linear fit between the differences in weights and the differences in attention.

The differences in attention are standardized.

intercept (αi). We use as explanatory variables the attentional variables including propor-

tion of time, total dwelling times, number of fixations, first and last fixation, as well as

individual characteristics (gender and age).

The results show that, after controlling for the individual characteristics, a large per-

centage (up to one third for the difference between weights for losses and gains) of the

heterogeneity in decision processes is explained by the individual differences in attention.

Predominantly, we find that the proportion of time, total dwelling times and number of

fixations contribute most to explaining these differences.

5.3 Incorporating attention in empirical decision models

While the previous results provide evidence for the importance of attention in choice, in this

section we aim to establish a closer connection between choice and attention by allowing

different attention variables to directly impact the decision weights associated with each

attribute in our model. We furthermore ask whether the inclusion of attention variables
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Table 4: Shapley value analysis assessing the explained variance for individual differences
in decision parameters

ωG,i ωL,i ∆ω αi

Attention 21.96 7.13 33.21 23.16

prop. (DT) 4.51 1.93 11.54 7.37
ln(DT) 5.83 2.22 7.45 6.61

N 7.87 1.15 6.87 3.79
Last 2.79 0.58 3.36 2.05
First 0.96 1.25 3.99 3.34

Ind. Characteristics 8.92 6.47 6.76 7.05

Female 5.14 6.09 0.11 1.08
Age 3.78 0.38 6.65 5.97

Residual 69.12 86.4 60.03 69.78

The table above shows the Shapley value analysis (based on R2) for the individual

attributes ωG,i, ωL,i, their difference ∆ω and the intercept αi. The table shows the

contribution of each variable (in percentage points) to the variance of each dependent

variable.

can improve the estimates of empirical decision models and enhance model fit. Using this

approach we compare the explanatory power of the different attention indexes with each

other. To this end, we explicitly introduce our attention measures into our estimation of

a structural decision model, as illustrated in equation 4. For the analysis in this section,

we use the log-dwell times as our attention variable, since this measure provides the best

fit, based on the Bayesian Information Criterion (BIC). In Appendix section C, we present

the same analysis with alternative attention measures.

We first consider a model with random effects for the intercepts, as is common practice

for estimating random utility models in economics. Table 5 shows the result of this esti-

mation. For comparison, model 1 includes no measure of attention, and model 2 includes

a single standard measure of attention that is commonly used in the literature. Following

the notation from section 4, the variable a(x) represents the attention allocated to at-

tribute x. We next decompose attention into two separate channels with ā(x) representing

the individual-average attention, and ã(x), reflecting the trial-wise deviations of attention.
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These separate attention measures are sequentially introduced in models (3-5), with model

5 reflecting the full model that includes both attention channels. More specifically, we add

overall attention to gains and losses (model 2), average individual attention to gains and

losses (model 3), trial-wise deviations in attention to gains and losses (model 4) and the

combination of individual attention and trial-wise attention (model 5). In each case, we

include the interaction with the actual attributes to capture attentional moderation of the

decision weights.

Results from the standard model (without attention, model 1) provide evidence for

loss aversion, as weights on losses are higher than those on gains. Importantly, for the

attention measures we observe that the coefficients for the interaction between individual

attention and loss and gain values are statistically significant (model 3), indicating that

individual differences in attention capture part of individual heterogeneity in the response

to gain and loss size. The direction of the results reflects that spending more attention

on gain values leads to an increased sensitivity towards gain amounts. More specifically,

participants that spend more attention to gains are more likely to accept lotteries that

have higher gain values, and less likely to reject lotteries with low gain values (relative

to participants that spend less time focusing on gains). Similarly, increased attention to

losses is associated with increased sensitivity to loss amounts. Note that Loss is encoded as

signed negative values, thus a positive weight expresses a negative relationship between loss

value and the probability to accept the lottery. These findings corroborate the evidence

on the relationship between attention and loss aversion reported in the previous section.

Turning to trial-wise attention, we observe a significant impact as a moderator for gain

values (model 4). This result implies that if a participant spends more time looking at gains

at a given trial, they are more likely to accept it. Note, however, that the significance of

the effect of trial-wise deviations of attention to losses depends on the model specification

(i.e. model 4 or 5).

We next evaluate how the inclusion of attention affects the explanatory power of these
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models. The measures of model fit at the bottom of Table 6 show that attention-based

models have higher explanatory power than the basic model in column 1, as evidenced by

the AIC and BIC criteria (∆ BIC = 190.4 when comparing the baseline model without

attention with the two-channel attention model, Att(ID+TW)). Moreover, splitting atten-

tional variation into its individual and contextual components leads to a better fit than

including attention without any decomposition (the standard measure in the literature;

∆ BIC = 127.4). The best model fit is reached by including both average and trial-wise

attention (AIC/BIC, ∆ BIC with next-best model Att(ID) = 32.4). This shows that in-

cluding attention leads to more accurate predictions, in general, and that the inclusion

of separate attention channels reflecting individual and contextual components leads to

further improvements.

Next, we compare these results to mixed models that explicitly incorporate individual

heterogeneity and are often used in the neuro-economic and cognitive psychology literature.

To this end, we estimate the same decision model from equation 4, but include individual

random slopes for the decision weights (ωG,i and ωL,i). We expect attentional variables, in

particular individual average attention, to have a lower impact relative to the model with

exclusively random intercepts, as heterogeneity is also incorporated in the random slopes.

Table 5 shows the estimations of the decision model, where the columns follow the

specifications in Table 6: The first columns displays the baseline model used for the analysis

(i.e., mixed-model with random slopes and intercepts; and no attention variables). The

second column incorporates the attention variable without decomposition into separate

channels. Columns three and four incorporate the individual-differences and the trial-

wise deviations of attention separately, while the last column incorporates both of them

simultaneously.

We highlight a number of results. First, as in the previous model, measures of individual-

average attention are significant moderators for both Gains and Losses in the models of

column (3) and (5). Thus, attention patterns continue to reveal additional information
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Table 5: Assessment of the relevance of separate attention channels across decision models
estimated with random intercepts

(1) (2) (3) (4) (5)
Baseline Attention Att(ID) Att(TW) Att(ID+TW)

Decision
Gain 0.352∗∗∗ 0.352∗∗∗ 0.360∗∗∗ 0.355∗∗∗ 0.361∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Gain × a(G) 0.018∗

(0.030)

Gain × ā(G) 0.076∗∗∗ 0.074∗∗∗

(0.000) (0.000)

Gain × ã(G) -0.027∗∗ -0.006
(0.004) (0.445)

Loss 0.433∗∗∗ 0.430∗∗∗ 0.446∗∗∗ 0.434∗∗∗ 0.443∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Loss × a(L) 0.043∗∗∗

(0.000)

Loss × ā(L) 0.077∗∗ 0.095∗∗∗

(0.004) (0.000)

Loss × ã(L) 0.008 0.034∗∗∗

(0.647) (0.000)

a(G) -0.370
(0.118)

ā(G) -0.677 -0.528
(0.262) (0.398)

ã(G) 0.993∗∗∗ 0.338
(0.001) (0.131)

a(L) 0.691∗∗

(0.003)

ā(L) -0.148 0.118
(0.836) (0.868)

ã(L) 0.008 0.520∗∗

(0.980) (0.003)

Constant -1.986∗∗∗ -2.058∗∗∗ -2.034∗∗∗ -2.062∗∗∗ -2.139∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
Observations 14238 14238 14238 14238 14238
AIC 8823.290 8730.009 8635.031 8752.162 8572.371
BIC 8868.672 8805.646 8710.668 8827.798 8678.262
p-values in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

This table shows the estimations of a logit regression with random intercepts. We use log(dwell-
times) as our attention measure for this regression. Column (1) shows a baseline model with
no attention variables, column (2) includes the standard attention variable (log(dwell-times))
without any decomposition. Next, we include our attention indexes separately (individual average
attention in column (3) and trial-wise deviations in column (4). Finally, column (5) includes both
attention indexes simultaneously.
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Table 6: Assessment of the relevance of separate attention channels across decision models
estimated with random slopes and intercepts

(1) (2) (3) (4) (5)
Baseline Attention Att(ID) Att(TW) Att(ID+TW)

Decision
Gain 0.440∗∗∗ 0.440∗∗∗ 0.440∗∗∗ 0.442∗∗∗ 0.441∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Gain × a(G) 0.003
(0.732)

Gain × ā(G) 0.061∗∗∗ 0.060∗∗

(0.000) (0.001)

Gain × ã(G) -0.006 -0.002
(0.470) (0.789)

Loss 0.582∗∗∗ 0.576∗∗∗ 0.581∗∗∗ 0.577∗∗∗ 0.575∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Loss × a(L) 0.035∗∗∗

(0.000)

Loss × ā(L) 0.050∗ 0.070∗∗

(0.048) (0.005)

Loss × ã(L) 0.036∗∗∗ 0.037∗∗∗

(0.000) (0.000)

a(G) 0.075
(0.724)

ā(G) -0.323 -0.199
(0.610) (0.760)

ã(G) 0.331 0.218
(0.155) (0.337)

a(L) 0.531∗∗

(0.004)

ā(L) -0.745 -0.458
(0.282) (0.503)

ã(L) 0.560∗∗ 0.568∗∗

(0.003) (0.002)

Constant -1.588∗ -1.710∗ -1.812∗∗ -1.793∗∗ -1.971∗∗

(0.011) (0.017) (0.005) (0.009) (0.002)
Observations 14238 14238 14238 14238 14238
AIC 8016.990 7967.962 8003.691 7966.473 7953.576
BIC 8100.190 8081.417 8117.146 8079.928 8097.286
p-values in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

This table shows the estimations of a logit regression with random intercepts and slopes. We use log(dwell-
times) as our attention measure for this regression. Column (1) shows a baseline model with no attention
variables, column (2) includes the standard attention variable (log(dwell-times)) without any decomposition.
Next, we include our attention indexes separately (individual average attention in column (3) and trial-wise
deviations in column (4). Finally, column (5) includes both attention indexes simultaneously.
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about individual heterogeneity, and do so beyond what is captured by the random effects.

Moreover, models (4) and (5) show a significant direct (main) effect of the trial-wise devi-

ations of attention to losses, as well as an interaction with loss size. This shows that both

individual attentional indexes and salience have an independent influence on the decision

process.

Turning to model fit, based on the Bayesian Information Criteria (BIC), the model

using the trial-wise deviations of attention is the best fitting model (although model 5

still shows a better fit than the model without attention, ∆ BIC = 2.9, and is the best

model based on and AIC). Thus, trial-wise attention can improve the model fit beyond

individual heterogeneity captured by the random slopes. However, compared to the large

improvements in model fit observed after including attention in random intercept models

commonly used in economics (delta BIC = 190.4), while the gains of including attention

remain large for models containing both random intecepts and slopes (∆ BIC = 20.3),

they are relatively smaller. This is especially true when compared to the large gain in fit

obtained from incorporating random effects for the loss and gain size variables (∆ BIC

between baseline models = 758.5; compare column 1 in Table 6 and Table 5).

Overall, we conclude that attentional variables emerge as significant correlates of choice

and capture individual heterogeneity, even in models that include random slopes. Moreover,

they lead to large improvements of model fits in standard economic models with common

slopes, especially when decomposing attention into two channels, namely individual average

attention and trial-wise deviations of attention. Finally, our results show relatively smaller

gains in model fits for mixed models that include both random intercepts and random

slopes, but adding separate attentional channels still leads to superior model fits also in

this class of models.
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6 Discussion and Conclusion

In this study, we investigate the relationship between attention and the decision process.

Participants take part in an incentivized experiment involving lotteries with positive and

negative outcomes, while their eye movements are recorded using eye-tracking. We analyze:

(1) the factors influencing attention, (2) how attention patterns relate to individual dif-

ferences in decision-making, (3) whether including attention in commonly used models for

decision-making processes can enhance model fit, and (4) whether a single attention mea-

sure or a decomposition into two attention channels reflecting individual average attention

and trial-wise deviations of attention further improves model fit.

Our results show that attention is weakly associated with both contextual factors,

such as the position of the information, and individual factors, such as gender and age.

Importantly, while some factors are significantly correlated with variations in attention,

their contribution is small, leaving most of the variance in attention unexplained. These

results suggest that measures of attention share little variance with common measures

related to individual and contextual factors, and are therefore in a position to explain

components of the variance of decision making processes above and beyond these measures.

This is exactly what our subsequent results show. Specifically, we first demonstrate

significant correlations between decisional and attentional loss aversion. We subsequently

show that attention is a significant moderator of decision weights that relate attribute size

to choices in the context of a modified random utility model. Most importantly, we show

that a decomposition of the attention data into individual average attention and trial-wise

differences in attention on a given attribute adds important explanatory power to models

of the decision process. Specifically, when considering individual average attention our

findings show that when participants spend more time than the average person looking at

an outcome, this increases the importance of this outcome for the decision. In addition,

trial-wise deviations in attention also matter: if a subjects spends more time looking at a

particular outcome in a given trial (compared to their experiment-wide average focus time
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on that attribute reflected by the individual average attention), our results indicate that a

higher weight is assigned to that outcome during that trial. This result mirrors prior work

on the causal effects of attention, showing that manipulating presentation times for a given

attribute and on a given trial, leads to a greater influence of that attribute on the decision

process (e.g., Pachur et al., 2018; Olschewski et al., 2018; Hirmas and Engelmann, 2023).

Finally, we would like to point out a number of methodological advances brought for-

ward by our modeling exercise: (1) our rich eye-tracking data gave us an opportunity

to compare different attention measures and make inferences on their relative suitability

for decision models. We find that a decomposition of the attention data into individual

average attention and trial-wise differences in attention leads to superior model fits and

explanatory power. Our current recommendation for the analyses of attention data ob-

tained via eye-tracking is to use the richer data obtained from the channel decomposition

outlined here, but future research is required to develop a more nuanced understanding of

the different contexts in which each of the attention measures is superior. (2) We compare

different modeling approaches from economics and other fields. We find that the inclusion

of random slopes can reduce the predictive power of some attention measures as a mod-

erator, but does not eliminate it. In such cases, relative measures, like the proportion of

time spent looking at an attribute, are likely the best predictors of individual differences

in attribute relevance, consistent with the existing literature (Rahal and Fiedler, 2019).

While random slope models are the preferred model type in some fields (e.g., Hoven et al.,

2023), they increase the complexity of mixed models often to the point of non-convergence

(Barr et al., 2013). Our results suggest that in cases when random slopes cannot be mod-

eled - e.g., when the amount of data does not match model complexity - the inclusion of

attention variables, specifically individual average attention, may compensate for some of

the otherwise unexplained variance.

Among economists, there is some expectation that attention can be a “unifying” vari-

able that ties together hitherto separate phenomena (Gabaix, 2019). Similarly, the po-
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tential of attention and eye-tracking are attracting scholars from new research fields, such

as management and organization science (e.g., Orquin and Mueller Loose, 2013; Meißner

and Oll, 2019). Overall, our results support attention as a useful variable to understand

the decision making process. We show here that both individual and contextual variation

matter, suggesting a role for modeling approaches that emphasize individual agency and

salience.

Moreover, the framework we propose here can be flexibly applied to different experi-

mental contexts and can help answer a number of questions that are crucial to fulfill this

promise of attention research. For instance, future research should address how the rela-

tive influence of contextual vs. individual drivers of attention varies across environments?

Moreover, how do various aspects of salience affect stimulus-driven attention and the oc-

currence of behavioral biases? How do individual differences in attention correlate with

personal characteristics and decision parameters? Answering these questions will be valu-

able to both theorists and policy makers alike. More generally, our approach demonstrates

the fruitful interaction between cognitive (neuro-)science and economic analysis.
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Appendix

A Determinants of attention

Tables 7 and 8 show the estimates of the linear regressions with random effects used to

calculate the Shapley values in section 5.1. The different columns show the estimates for

the different attention variables, proportion of time, log dwell-times, number of fixations,

first and last fixation.

Table 7: Determinants of attention to Gains

p(DT) DT Last First N

main
trial -0.0306∗∗∗ -0.0833∗∗∗ -0.0770∗∗∗ -0.00815 -0.0247∗

(-3.29) (-5.60) (-5.31) (-1.25) (-2.41)

trial2 0.0107 0.0353∗∗ 0.0266∗ -0.000988 0.00716
(1.01) (3.18) (2.26) (-0.14) (0.73)

Gain Value 0.0306∗∗∗ 0.0509∗∗∗ 0.0421∗∗ 0.00719 0.0160
(3.80) (4.75) (3.06) (1.26) (1.94)

Loss Value 0.0716∗∗ 0.0459∗ 0.0576∗∗∗ 0.0491∗∗ 0.0628∗∗∗

(3.24) (2.46) (3.81) (2.67) (3.78)

L. Left 0.393∗∗∗ 0.315∗∗∗ -0.233∗∗∗ -1.034∗∗∗ 0.213∗∗∗

(5.34) (6.58) (-5.11) (-10.27) (3.74)

Observations 14238 14238 14238 14238 14238
AIC 39411.4 35914.0 37310.1 35951.0 39938.4
BIC 39487.0 35989.6 37385.8 36026.7 40014.1

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

p(DT) = normalized dwell times; DT = dwell times;
Last = Last fixation, First = First Fixation; N = number of times fixated
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Table 8: Determinants of attention to Losses

p(DT) DT Last First N

main
trial 0.0306∗∗∗ -0.0446∗∗ -0.0570∗∗∗ 0.00815 0.0247∗

(3.29) (-2.64) (-3.84) (1.25) (2.41)

trial2 -0.0107 0.0203 0.0233∗ 0.000988 -0.00716
(-1.01) (1.82) (2.00) (0.14) (-0.73)

Gain Value -0.0306∗∗∗ 0.0132 0.0239 -0.00719 -0.0160
(-3.80) (0.96) (1.71) (-1.26) (-1.94)

Loss Value -0.0716∗∗ -0.0408∗∗ -0.0368∗∗ -0.0491∗∗ -0.0628∗∗∗

(-3.24) (-2.63) (-2.60) (-2.67) (-3.78)

L. Left -0.393∗∗∗ -0.181∗∗∗ 0.328∗∗∗ 1.034∗∗∗ -0.213∗∗∗

(-5.34) (-3.73) (7.02) (10.27) (-3.74)

Observations 14238 14238 14238 14238 14238
AIC 39411.4 36442.7 37307.2 35951.0 39938.4
BIC 39487.0 36518.3 37382.8 36026.7 40014.1

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

B Association between attentional loss aversion and individ-

ual differences in intercepts
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Figure 3: Avg. Attention and Individual Differences (intercept)

The figures above show the correlation between the differences in decision intercepts

(αi, on the vertical axis) and the differences in average attention towards losses relative

to gains (āL,i−āG,i, on the horizontal axis). The red line displays the linear fit between

the differences in weights and the differences in attention. The differences in attention

are standardized.
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C Testing our Model using different Attention Measures

We run manipulation checks for our results reported in the main text by testing different

measures for attention that can be extracted from eye-tracking data. Specifically, tables 9 to

12 show the decision models using as the attention measure the proportion of time, number

of fixations, first fixation and last fixation respectively. We largely find overlapping results

for the proportion of dwell time and number of fixations, but not for first and last fixation.

The measure of individual-average attention shows significant results for the proportion of

dwell time (b(L) = 0.070, p-value = 0.001, column 5) and the number of fixations (b(G)

= 0.047, p-value = 0.014). The variables proportion of time, first and last fixation are

incorporated only for one attribute, since these variables are perfectly colinear (i.e., the

model including them is unidentifiable and cannot be estimated). Column (1) is the baseline

model without attention (same for all tables). Column (2) uses the attention measure

without decomposition (a(x)); columns (3) and (4) incorporate the attention measures

of individual differences (ā(x)) and trial-wise deviations (ã(x)) respectively. Column (5)

incorporates both measures simultaneously.
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Table 9: Decision models including attention measures (Proportion of dwell time)

(1) (2) (3) (4) (5)
Baseline Attention Att(ID) Att(TW) Att(ID+TW)

Decision
Gain 0.440∗∗∗ 0.440∗∗∗ 0.440∗∗∗ 0.440∗∗∗ 0.439∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Loss 0.582∗∗∗ 0.580∗∗∗ 0.579∗∗∗ 0.581∗∗∗ 0.577∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Loss × a(L) 0.005
(0.669)

Loss × ā(L) 0.069∗∗∗ 0.070∗∗∗

(0.001) (0.001)

Loss × ã(L) -0.000 0.004
(0.994) (0.753)

a(L) -0.089
(0.690)

ā(L) 0.545 0.417
(0.201) (0.352)

ã(L) -0.177 -0.111
(0.394) (0.616)

Constant -1.588∗ -1.623∗ -1.564∗ -1.643∗ -1.597∗

(0.011) (0.021) (0.025) (0.020) (0.021)

Observations 14238 14238 14238 14238 14238
AIC 8016.990 7986.480 8009.290 7988.911 7979.666
BIC 8100.190 8084.807 8107.618 8087.239 8093.121

p-values in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 10: Decision models including attention measures (Number of fixations)

(1) (2) (3) (4) (5)
Baseline Attention Att(ID) Att(TW) Att(ID+TW)

Decision
Gain 0.440∗∗∗ 0.441∗∗∗ 0.440∗∗∗ 0.442∗∗∗ 0.442∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Gain × a(G) -0.005
(0.492)

Gain × ā(G) 0.051∗∗ 0.047∗

(0.007) (0.014)

Gain × ã(G) -0.011 -0.008
(0.123) (0.244)

Loss 0.582∗∗∗ 0.578∗∗∗ 0.582∗∗∗ 0.578∗∗∗ 0.578∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Loss × a(L) 0.014
(0.202)

Loss × ā(L) 0.031 0.040
(0.208) (0.118)

Loss × ã(L) 0.015 0.015
(0.179) (0.179)

a(G) 0.262
(0.172)

ā(G) -0.287 -0.087
(0.744) (0.920)

ã(G) 0.449∗ 0.367
(0.025) (0.063)

a(L) 0.180
(0.404)

ā(L) -0.720 -0.609
(0.419) (0.491)

ã(L) 0.203 0.204
(0.349) (0.355)

Constant -1.588∗ -1.695∗ -1.628∗ -1.746∗ -1.762∗∗

(0.011) (0.017) (0.016) (0.011) (0.008)

Observations 14238 14238 14238 14238 14238
AIC 8016.990 8003.342 8013.495 7999.017 7997.809
BIC 8100.190 8116.797 8126.950 8112.473 8141.519

p-values in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 11: Decision models including attention measures (First Fixation)

(1) (2) (3) (4) (5)
Baseline Attention Att(ID) Att(TW) Att(ID+TW)

Decision
Gain 0.440∗∗∗ 0.440∗∗∗ 0.440∗∗∗ 0.440∗∗∗ 0.440∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Loss 0.582∗∗∗ 0.582∗∗∗ 0.583∗∗∗ 0.582∗∗∗ 0.583∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Loss × a(L) -0.011
(0.363)

Loss × ā(L) -0.026 -0.037
(0.396) (0.247)

Loss × ã(L) -0.009 -0.011
(0.463) (0.370)

a(L) -0.270
(0.259)

ā(L) 0.026 -0.240
(0.962) (0.678)

ã(L) -0.222 -0.267
(0.321) (0.263)

Constant -1.588∗ -1.608∗ -1.716∗ -1.632∗ -1.736∗

(0.011) (0.024) (0.013) (0.021) (0.013)

Observations 14238 14238 14238 14238 14238
AIC 8016.990 8015.414 8016.231 8015.574 8014.661
BIC 8100.190 8113.741 8114.559 8113.902 8128.116

p-values in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 12: Decision models including attention measures (Last Fixation)

(1) (2) (3) (4) (5)
Baseline Attention Att(ID) Att(TW) Att(ID+TW)

Decision
Gain 0.440∗∗∗ 0.439∗∗∗ 0.440∗∗∗ 0.439∗∗∗ 0.439∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Loss 0.582∗∗∗ 0.581∗∗∗ 0.582∗∗∗ 0.581∗∗∗ 0.580∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Loss × a(L) -0.010
(0.201)

Loss × ā(L) 0.027 0.020
(0.216) (0.402)

Loss × ã(L) -0.010 -0.010
(0.181) (0.195)

a(L) -0.292
(0.053)

ā(L) -0.167 -0.396
(0.687) (0.354)

ã(L) -0.286 -0.294
(0.050) (0.052)

Constant -1.588∗ -1.593∗ -1.647∗ -1.583∗ -1.649∗

(0.011) (0.024) (0.017) (0.027) (0.017)

Observations 14238 14238 14238 14238 14238
AIC 8016.990 8008.012 8016.114 8009.204 8007.300
BIC 8100.190 8106.340 8114.442 8107.531 8120.756

p-values in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Figure 4: Horizontal and Vertical Clusters of visual fixations

The figures above describe the center of the individual clusters on the x- and y-axis

of the screen. Left Panel: three main clusters for the horizontal axis, consistent with

the regions of interest (left, middle and right). Right panel: on the vertical axis, there

is only one concentration point since all regions of interest are aligned at the same

height.
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Information Brochure for Decision-Making Study 
 
Dear participant , 
 
Thank you for participating in this experiment. Before you start the experiment, it is important that 
you are aware of the procedures followed in this study. Please read the following text carefully and 
do not hesitate to ask your experimenter if you have any questions.  
 
Aim of the study 
The goal of our experiment is to investigate how people make financial decisions under risk. The 
experiment will take about 1 hour to complete and we will track your eye movements throughout 
the experiment.  
 
Experiment procedure 
You will receive an initial payment of 10 Euros for filling out a number of questionnaires. Based on 
your decisions throughout the experiment, you have the chance to earn additional money, as well as 
to lose money from your endowment. This is because one trial will be randomly selected at the end 
of the experiment - the payout relevant trial. The decision you made on this trial will be realized as 
explained in detail below. All values shown in the experiment are in monetary units (MU), which have 
an exchange rate of 1 MU = 0.1851852 Euros. 
 
You are not allowed to write anything down or make notes during the experiment. Moreover, it is 
very important that you look at the screen throughout the experiment, unless there is a break and 
we ask you to relax your eyes. 
 
a. Detailed description of the choice scenarios 
 
The experiment consists of a total of 160 decisions. Your task is to make a decision about which of 
two options you prefer: (A) receiving a certain payout, which leads to no change to your endowment 
of 10 Euros, or (B) playing a lottery, which can lead to additional earnings with a 50% probability, but 
also losses with a 50% probability. Choosing the lottery means that you could win, or lose, one of the 
amounts displayed on the screen with equal (50%) probability. Note that the values offered by the 
lottery will change on every trial, so please make sure that you pay attention to the amounts on 
every trial before you make a decision. The certain payout, on the other hand, will remain the same 
throughout the experiment, such that when you choose this option there will be no additional 
earnings added to or losses subtracted from your initial endowment.  
 
To make this even clearer, consider the 
following example: On every trial, the 
values of the lottery will be displayed on 
the screen as shown in the figure on the 
right. In this example trial, gains are 
shown on the left side (gains are signified 
by “+”) and losses are on the right (losses 
are signified by “-“). This means that if 
you decide to accept the lottery on this 
trial, you will have a 50% chance of 
winning 22 MU and a 50% chance of losing 18 MU, which will be added to or subtracted from your 



endowment (your payment of 10€ for the questionnaires). Whether you receive the gain or loss will 
be decided upon via a virtual coin flip, if you selected the lottery on the payout relevant trial selected 
at the end of the experiment. Note that the locations of gains and losses are not set and can also be 
reversed on some trials, with losses on the left and gains on the right. Choosing the safe option 
always leads to no change from your initial endowment, that means you do not receive any 
additional gains, nor will you incur any additional losses. 
 
Once you have decided which option you prefer, you can communicate your choice by pressing one 
of two buttons:  
 

• Press the up arrow key to choose the lottery. 
• Press the down arrow key to choose the safe option. 

 
You will receive a brief feedback after you made the decision (for ca. 1 second), which indicates what 
option you have chosen, such that the letter L appears in the center of the screen, when you chose 
the lottery, and the letter C appears in the center of the screen when you chose the certain payout. 
After a short break, the next lottery will be displayed. 
 
 
b. Details on payout determination 
 
After you have made your choice for all 160 lotteries, you will select the payout relevant trial by 
rolling three 10-sided dice. The die rolls will reflect a number between 1 and 160 (the number of all 
decisions that you have made) as follows: the first die that you roll indicates whether your payout 
relevant trial is smaller than 100 (die shows a number <5), or greater than 100 (die shows a number 
>= 5). The second and third die rolls then determine the exact trial number. If the trial number is 
greater than 160, you will roll dice 2 and 3 until a number =< 160 is generated. You will then enter 
the chosen trial number into the computer, which will recall the exact decision that you have made 
on that trial. 
 
If you chose to play the lottery, a computer algorithm equivalent to an even coin flip will determine 
whether the gain amount on this trial will be added to your endowment, or whether the loss amount 
will be deducted from your endowment. Please remember that the monetary units will first be 
converted to euros using the exchange rate of 1 MU = 0.1851852 Euros. If you chose the certain 
option, you will receive your endowment of 10 Euros. The amounts on the randomly selected payout 
relevant trial, your decision and your additional wins or losses will be displayed to you on the screen. 
Your final payment will be calculated as follows:  
 
If the outcome was a gain: 10 Euro (endowment) + gain amount * 0.1851852 
If the outcome was a loss: 10 Euro (endowment) - loss amount * 0.1851852 
If you chose the certain outcome: 10 Euro (endowment). 
 
 
c. Subparts of the experiment 
 



1. At the beginning of the experiment you will fill out questionnaires for about 30 minutes. For 
your work, you will receive a payment of 10 Euros for use in the following part of the 
experiment. 

2. After the questionnaires, you will be given the chance to familiarize yourself with the 
experiment in 10 practice trials. These 10 decisions will not affect your final payout and will 
be made solely for the purpose of giving you experience with the choice scenarios and the 
speed of the experiment. 

3. The main experiment begins after all your questions have been answered and we are certain 
that you have understood all aspects of the experiment. We will now set up the eye tracker, 
which monitors where you are looking throughout the remainder of the experiment. To this 
end, we will ask you to place your head on a chin rest. From this point on, it is very important 
that you move your head as little as possible and fixate on the screen. 

4. At the end of the experiment, we ask you to fill out a final questionnaire, which will take an 
additional 10 minutes. 

5. Finally, you will receive your payment, which will be determined as outlined in detail above. 
 
Confidentiality 
All research data will remain completely confidential. In case of either using these results in scientific 
publications or making these results public in any other way, this will happen anonymously. Personal 
data will not be seen by others without explicit approval.  
 
VOLUNTARY 
Your participation in this study is voluntary. You are free to choose whether to participate in this 
study. You may also choose to withdraw from the study or to decline to answer any questions at any 
time. You will not be penalized or lose any benefits to which you are otherwise entitled if you choose 
not to participate or choose to withdraw. 
 
INSURANCE 
Participation in this study involves making simple choices which is routinely used and will do no harm 
to your health or safety. Because this study poses no risks to your health or safety, the conditions of 
the regular liability insurance of the University of Amsterdam are applied. 
 
FURTHER INFORMATION 
If you have questions about this research beforehand or afterwards, please contact the responsible 
researcher dr. Jan Engelmann (e-mail j.b.engelmann@gmail.com). In case of complaints about this 
study, you can contact Dr. Wery van den Wildenberg, member of the ethical committee of the 
Psychology Department of the University of Amsterdam (Fmg-UvA, REC-G1.10, Nieuwe Achtergracht 
129 B, 1018 WS Amsterdam, 020-5256686, w.p.m.vandenwildenberg@uva.nl). 
 



AGREEMENT 
 
When you sign this document containing a written explanation of the experiment that you are 
participating in, you declare that you have read and understood the instructions and that all your 
questions have been answered by the experimenter. Moreover, with your signature you agree to 
participate in the procedures outlined in the instruction above. 
 
If you have further questions about this experiment, please contact the responsible researcher dr. 
Jan Engelmann (e-mail j.b.engelmann@gmail.com). In case of complaints about this study, you can 
contact Dr. Wery van den Wildenberg, member of the ethical committee of the Psychology 
Department of the University of Amsterdam (Fmg-UvA, REC-G1.10, Nieuwe Achtergracht 129 B, 1018 
WS Amsterdam, 020-5256686, w.p.m.vandenwildenberg@uva.nl). 
 
 
[Participant] 

“I have read and understood the information above and agree to participate in the 
current experiment and grant the experimenters permission to use my data. I reserve the 
right to withdraw from this agreement without giving any explanation, as well as to 
withdraw from participation in this experiment at any time.” 

 
 
 

Date: 
 
……………………………............   …………………………… 
Participant name      Signature 

 
 
 
[Experimenter] 

“I have explained the experiment to the participant. I will answer any further questions to 
my best knowledge.” 
 
 
 
Date: 
 
……………………………............   …………………………… 
Researcher name      Signature 
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Exit Questionnaire. 
 
 
Thank you again for participating in our experiment. Because we are always concerned 
with improving the experiment and the instructions, we have just a few questions for 
you. Please rate how you much you agree with the following statements using the scale 
below. 
 
 
0 1 2 3 4 
Strongly 
disagree 

Disagree  Undecided Agree Strongly agree 

 
 
Statement Your 

Evaluation  
During the experiment, I never considered that I would not receive the 
amount that I selected via dice rolls at the end the end of the experiment. 
 

 

During the experiment, I considered that the experiment was programed in 
such a way that would make me lose money. 
 

 

During the experiment, I never thought that I was being deceived by the 
experimenters about the additional money I could win or lose? 
 

 

During the experiment, I fully understood that the values shown would be 
converted to Euros via an exchange rate. 
 

 

 
 
 

• Have you ever participated in an experiment in which you were deceived? Please 
circle your answer. 

 
Yes   No   Cannot tell /  

do not remember 
 

• To what extent do you think that previous experiences with deception 
influenced your behavior in the current experiment? Please circle one answer. 
Previous experiences with deception influenced me in this experiment … 

 
0 1 2 3 4 
Not at all  Slightly  Somewhat  Moderately Extremely  
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• Please use the space below if you have any other comments or questions about 

the experiment. 
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