Learning the Value of Eco-Labels

Alejandro Hirmas Jan Engelmann

August 31, 2022

Motivation - Climate Action and Emissions

Global annual mean temperature relative to pre-industrial levels (1850–1900 average), 1850–2021 (degrees Celsius)

Source: The figure is drawn from the the World Meteorological Organization's State of the Global Climate 2021 report, which combines six international data sets for temperature: HadCRUT.SOL.01K Met Office), NOAAGlobalTemp v5 (USA), NASA GISTEMP v4 (USA), Berkeley Earth (USA), ERAS (ECMVF), JRA-55 (Japan).

Source: UN SDG Progress Report (2022)

Motivation - Climate Action and Emissions

Source: OECD Carbon Emission Report

Motivation - Labels as source of information

- Labels and ratings are useful to inform consumers.
- Impact of *Information provision* (Allcott and Taubinsky, 2015):
 - Reduce biased beliefs
 - Reduce inattention (to energy costs)
 - Facilitate information acquisition
 - Forces reflection on the choice
- Consumers are experienced with making decisions with different ratings

Research Questions

In this study:

1. How do consumers react to sustainability ratings compared to quality ratings?

Research Questions

In this study:

1. How do consumers react to sustainability ratings compared to quality ratings?

2. How do consumers update their behaviour when beliefs about ratings change?

Attention and the decision process

- Attention is an important mechanism in the decision process
- Process of selecting and filtering information relevant for the decision
- Multiple studies show links between importance of a stimulus and the attention paid to it (Review: Orquin and Mueller Loose, 2013)
- We expand on Engelmann et al. (2021) [WP] to incorporate attention to the estimations of the decision process.
- Attention allows to capture heterogeneity in the preferences of participants
- Also the role of contextual factors in the decision process.

Experimental Design

- Participants choose between two products depending on Price, Quality and Sustainability
- Quality and Sustainability presented as ratings
- Participants do not know the underlying value of ratings (but know the range)

Experimental Design

In the middle of the experiment:

- elicit their belief about the ratings
- Give them information about the ratings
- repeat decisions

Experimental Design

- Online Experiment (Prolific)
- Participants choose between 2 artificial products
- Products are not real, but benefits are.
- Participants get:
 - Participation fee
 - Bonus Payment
 - Planting trees (via OneTreePlanted.org)
- Three different attributes:
 - Price: Reduces Bonus Payment
 - Quality: Increases Bonus Payment
 - Sustainability: Increases amount of planted trees

- Participants observe Quality and Sustainability as ratings.
- Higher ratings (stars or leaves) represent a higher (but unkown) underlying value
- Information is hidden in 'boxes'
 - Participants mouse over the attributes to reveal info
 - Attributes revealed by rows

	Product 1	Product 2
Price	£2.5	£1
Quality	<mark>☆</mark> ☆☆	ፚ፞፞ፚ፞፞፞ፚ፞
Sustainability	999	9 99
	Product 1	Product 2

- Participants observe Quality and Sustainability as ratings.
- Higher ratings (stars or leaves) represent a higher (but unkown) underlying value
- Information is hidden in 'boxes'
 - Participants mouse over the attributes to reveal info
 - Attributes revealed by rows

- Participants observe Quality and Sustainability as ratings.
- Higher ratings (stars or leaves) represent a higher (but unkown) underlying value
- Information is hidden in 'boxes'
 - Participants mouse over the attributes to reveal info
 - Attributes revealed by rows

- Participants observe Quality and Sustainability as ratings.
- Higher ratings (stars or leaves) represent a higher (but unkown) underlying value
- Information is hidden in 'boxes'
 - Participants mouse over the attributes to reveal info
 - Attributes revealed by rows

	Product 1	Product 2
Price		
Quality	<mark>ਨੇ</mark> ਨੇਨੇ	ኇ፟፟፟
Sustainability		
	Product 1	Product 2

- Participants observe Quality and Sustainability as ratings.
- Higher ratings (stars or leaves) represent a higher (but unkown) underlying value
- Information is hidden in 'boxes'
 - Participants mouse over the attributes to reveal info
 - Attributes revealed by rows

- Participants observe Quality and Sustainability as ratings.
- Higher ratings (stars or leaves) represent a higher (but unkown) underlying value
- Information is hidden in 'boxes'
 - Participants mouse over the attributes to reveal info
 - Attributes revealed by rows

Main Task - some details

- Participants know the range for Quality and Sustainability, not values per level.
- Different attribute combinations (pseudo-randomized combinations)
- Demographics + Connectedness to Nature (CNS)

Main Task - Additional Information

After eliciting beliefs, if assigned to Information treatments:

- We showed two graphs about the underlying value of the labels.
- Quality and Sustainability have a point system.
 - 10 Sustainability points = 1 tree
 - 10 Quality points = 0.5 pounds

Main Task - Additional Information

- Depending on the treatment, one of the attributes had a convex distribution of values.
- A convex distribution: mid rating has a low value similar to low rating.
- 3 between-subject treatments:
 - S. Linear + Q. Linear
 - S. Convex + Q. Linear
 - S. Linear + Q. Convex

Main Task - Additional Information

- Depending on the treatment, one of the attributes had a convex distribution of values.
- A convex distribution: mid rating has a low value similar to low rating.
- 3 between-subject treatments:
 - S. Linear + Q. Linear
 - S. Convex + Q. Linear
 - S. Linear + Q. Convex

Experiment Overview

- 295 participants in Prolific (139 female, 2 non-binary/not disclose)
- Most participants come from UK (68) or continental Europe (169)
- Avg. age =29.9
- 277 clicked to select where they wanted to plant the trees.
- 182 Selected a specific location
- Large differences in Connectedness to Nature (CNS) (histogram
 - mean (sd): 3.546 (.621)
 - min/max: 1.571/5

The green side of this project!

In total, 1153 trees where planted across the world.

Thanks to Diana Garcia for the beautiful Figure.

Results - Before Information about ratings

Decision Stage (Before Information) Decision Stage (After Information)

Results - Before Information about ratings

Decision Stage (Before Information) Information about ratings Decision Stage (After Information)

Beliefs before information about ratings

Decision Models - Before information about ratings

First stage: separate main factors affecting attention to attributes $k \in \{P, S, Q\}$

- Individual factors $\hat{\eta}_{k,i}$
- Contextual factors $\hat{z}_{k,t}$

Second stage: Conditional Logits (i.e. Fixed Effects) for decisions with the following specifications:

$$V_{i,t} = \omega_{P,i,t} \Delta P_t + \omega_{S,i,t} \Delta v_{S,c_t} + \omega_{Q,i,t} \Delta v_{Q,c_t} + \eta_{i,t} \qquad (M1 - M3)$$

With:

$$\omega_{k,i,t} = \pi_{k,0} + \pi_{k,\eta} \hat{\eta}_{k,i} + \hat{z}_{k,t} \beta_k \qquad (M1)$$

$$\omega_{k,i,t} = \pi_{k,0} + \pi_{k,\eta} \hat{\eta}_{k,i} \qquad (M2)$$

$$\omega_{k,i,t} = \pi_{k,0} \tag{M3}$$

Where:

- ΔP_t is difference in price
- $\Delta v_{S,c_t}, \Delta v_{Q,c_t}$: diff. in S and Q ratings with $c_t \in \{2vs1, 3vs2, 3vs1\}$

Willingness to Pay (WTP) - Before information

Marginal WTP for increasing each rating.

$$WTP_{c}^{k}(\bar{a}_{i}) = rac{\omega_{k,i,t}\Delta v_{k,c}}{\omega_{P,i,t}}$$

Concavity and Transitivity

Lighter colors (green/orange): Participants with lowest avg. attention to attribute (10th percentile)

Darker colors (green/orange): Participants with highest avg. attention to attribute (90th percentile)

Willingness to Pay (WTP) - Before information

Marginal WTP for increasing each rating.

$$WTP_{c}^{k}(\bar{a}_{i}) = rac{\omega_{k,i,t}\Delta v_{k,c}}{\omega_{P,i,t}}$$

Attention to Sustainability

Lighter colors (green/orange): Participants with lowest avg. attention to attribute (10th percentile)

Darker colors (green/orange): Participants with highest avg. attention to attribute (90th percentile)

Willingness to Pay (WTP) - Before information

Marginal WTP for increasing each rating.

$$WTP_{c}^{k}(\bar{a}_{i}) = rac{\omega_{k,i,t}\Delta v_{k,c}}{\omega_{P,i,t}}$$

Attention to Quality

Lighter colors (green/orange): Participants with lowest avg. attention to attribute (10th percentile)

Darker colors (green/orange): Participants with highest avg. attention to attribute (90th percentile)

Results - After Information about ratings

Decision Stage Information (Before Information) about ratings

Decision Stage (After Information)

Results - After Information about ratings

Sustainability

Sustainability

Quality

Quality

Results after Information

- $\bullet\,$ Treatments have different effects on Q and S
 - $\downarrow S_2 \Longrightarrow \downarrow v^{S}(2,1), \uparrow v^{S}(3,2)$
 - $\downarrow Q_2 \Longrightarrow \uparrow v^Q(3,2)$
- Shifts in attention linked to shifts in preferences
 - \downarrow Individual in attention to S $\Longrightarrow \downarrow v^{S}(2,1)$
 - \uparrow Individual in attention to Q $\implies \uparrow v^Q(3,2)$
- Treatment effects are stronger on participants with initial higher attention to attribute.

Summary of results

Before Information:

- Beliefs about Sustainability and Quality ratings are linear.
- Preferences for Q and S are concave
- Individual and contextual factors of attention capture heterogeneity in preferences for all attributes.

After Information:

- Changes in beliefs are in line with treatments
- WTP changes asymmetrically for Q and S
- Changes in Attention partially moderate the changes in WTP

https://ahirmas.com/ a.hirmas@uva.nl

- Allcott, H. and Taubinsky, D. (2015). Evaluating behaviorally motivated policy: Experimental evidence from the lightbulb market. *American Economic Review*, 105(8):2501–38.
- Engelmann, J. B., Hirmas, A., and Van der Weele, J. J. (2021). Top Down or Bottom Up? Disentangling the Channels of Attention in Risky Choice. *Tinbergen Institute Discussion Paper*, 031(I).
- Orquin, J. L. and Mueller Loose, S. (2013). Attention and choice: A review on eye movements in decision making. *Acta Psychologica*, 144(1):190–206.

Pseudo-randomization

- For each pair (1,2),(3,2),(3,1) (number of leaves of each product), we combine them with:
 - Non-Sustainable product with higher quality and higher price
 - Non-Sustainable product with higher quality and lower price
 - Non-Sustainable product with lower quality and lower price
 - Non-Sustainable product with higher quality and equal price
- Additionally, 2 trials have equal sustainability but one has higher price and quality.
- All pairs have the same combination for each participant. (e.g. same higher Q and P for the three pairs of S)
- The participants observe the same blocks before and after and in the same order.

Back

Attitude - Sustainability

How do you see yourself: are you generally a person who is prepared to behave sustainably, even when this is inconvenient or costly to you?

Connectedness to Nature

Before Information - Results

	(1)		(2)		(3)	
ΔP	-1.026***	(0.000)	-1.026***	(0.000)	-1.073***	(0.000)
$\Delta P imes ar{a}_P$	-0.911***	(0.000)	-0.925***	(0.000)		
$\Delta P imes ilde{a}_P$	-0.041	(0.549)				
$\Delta Q(3vs2)$	1.266***	(0.000)	1.226***	(0.000)	1.206***	(0.000)
$\Delta Q(2vs1)$	1.791***	(0.000)	1.798***	(0.000)	1.749***	(0.000)
$\Delta Q(3vs2) \times \bar{a}_Q$	0.513***	(0.001)	0.398**	(0.006)		
$\Delta Q(3vs2) \times \tilde{a}_Q$	-0.284**	(0.007)				
$\Delta Q(2vs1) imes ar{a}_Q$	0.551***	(0.000)	0.589***	(0.000)		
$\Delta Q(2vs1) imes ilde{a}_Q$	0.091	(0.378)				
$\Delta S(3vs2)$	0.992***	(0.000)	0.975***	(0.000)	0.981***	(0.000)
$\Delta S(2vs1)$	1.182***	(0.000)	1.209***	(0.000)	1.236***	(0.000)
$\Delta S(3vs2) imes ar{a}_S$	0.697***	(0.000)	0.614***	(0.000)		
$\Delta S(3vs2) imes ilde{a}_S$	-0.158	(0.093)				
$\Delta S(2vs1) imes ar{a}_S$	0.790***	(0.000)	0.872***	(0.000)		
$\Delta S(2vs1) imes ilde{a}_S$	0.179	(0.110)				
Observations	4981		4981		4981	
AIC	3640.001		3640.350		3836.793	
BIC	3737.702		3705.484		3869.360	

p-values in parentheses

$*$
 $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$